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Abstract
We study pseudo-optimal solutions to multi-objective optimization problems
by introducing partial minima defined as follows. Point x k-dominates x′ when
at least k of the coordinates of x are smaller than the corresponding coordinates
of x′. A point not k-dominated by any other point in the set is a k-minimum
or a partial minimum, generalizing the global minimum. We study statistical
properties of partial minima for a set of N points independently distributed
inside the d-dimensional unit hypercube using exact probabilistic methods and
heuristic scaling techniques. The average number of partial minima, A, decays
algebraically with the total number of points, A ∼ N−(d−k)/k , when 1 � k < d.
Interestingly, there are k − 1 distinct scaling laws characterizing the largest
coordinates: the distribution P(yj ) of the j th largest coordinate, yj , decays
algebraically, P(yj ) ∼ (yj )

−αj −1, with αj = j d−k
k−j

for 1 � j � k − 1. The

average number of partial minima grows logarithmically, A � 1
(d−1)! (ln N)d−1,

when k = d. The full distribution of the number of minima is obtained in
closed form in two dimensions.

PACS numbers: 02.50.Cw, 05.40.−a, 89.20.Ff, 89.75.Da

1. Introduction

A host of decisions in computer science, economics, politics and everyday life involve multiple
criteria or multiple objectives [1–4]. A pedestrian choosing a walking path considers the
distance, the number of turns and the number of traffic lights. In business, takeover bids
are decided on a multitude of complex conditions in addition to the total monetary offer. In
elections, voters examine how candidates stand on multiple issues.

In multi-objective optimization, a solution that is optimal with respect to all criteria is
rarely possible and instead, one faces a set of choices that are suboptimal on at least one
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A  B C

Figure 1. Illustration of partial domination and partial minima. There are three costs associated
with A, B and C. A and C dominate B on one cost and thus B is not a 1-minimum. Neither A nor
C dominate B on two costs and thus B is a 2-minimum.

criterion. Decisions require algorithms to weed out clearly inferior choices, sort through all
the remaining imperfect choices and evaluate the relative trade-offs between costs.

Since in multi-objective optimization, a global optimum is unlikely, we are interested in
identifying points that are close to optimum. In this paper, we propose a pseudo-optimality
criterion, and derive the likelihood of finding pseudo-optimal solutions as a function of the
number of choices.

By definition, a global optimum is superior in all cost dimensions. Intuitively, one
may define a pseudo-optimum as superior to all alternatives along a large number of cost
dimensions. For example, in a three-cost scenario, there may not be any choice that is optimal
with respect to all three costs, but we may be able to find choices that are better than any
alternative along two costs, see figure 1. In a voting scenario, no candidate may have the most
attractive position on all issues to a given voter. In this case, a voter might naturally restrict
her attention to a candidate, or candidates, who have the most attractive position on as many
issues as possible.

Let us represent our choices as N points in d dimensions with coordinates x ≡
(x1, x2, . . . , xd). Each coordinate xi > 0 represents a distinct cost. By convention, small-
x values are superior and are considered dominant. Partial minima, a formalization of the
pseudo-optima concept discussed above, are defined as follows. A point x is said to be k-
dominated by x′ when at least k of the coordinates of x are larger than the corresponding
coordinates of x′. A point is said to be a partial minimum, or formally a k-minimum, when it is
not k-dominated by any other point in the set as illustrated in figure 1. We stress that a partial
minimum is not required to dominate all other points on the same d − k coordinates and may
dominate different points along different coordinates. The parameter 1 � k � d quantifies the
quality of the partial minimum: a smaller k value represents a more stringent condition. The
two extremes are the global minimum, k = 1, where every coordinate is a minimum of
the point set, and the efficient set, k = d, that includes all points that are not obviously
dominated by other points as shown later in figure 3. Partial minima are conditional
multivariate extrema and their properties are amenable to analysis using a statistical physics
perspective [5–9].

In this study, we obtain exact statistical properties of partial minima including the
multivariate density and its asymptotic behavior as well as scaling properties such as the
typical size and average number of minima. We present two major results. First, as a function
of the set size N, the average number of minima decays algebraically when 1 � k < d, and
grows logarithmically when k = d. Second, there are k − 1 different scaling laws for the
largest coordinates, each following a power-law distribution with k − 1 distinct exponents.
The rest of the d + 1 − k coordinates are characterized by distributions with sharp tails. We
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also discuss the relevance of these results to the multi-objective shortest path on graphs, a
central problem in multi-objective optimization.

We consider the situation where there are no correlations between the coordinates. That
is, each coordinate is independently drawn from some distribution. As discussed below, this
situation is equivalent to a uniform distribution in the unit hypercube. Thus, we conveniently
assume that xi is uniformly distributed in [0 : 1] for all 1 � i � d.

2. Heuristic arguments

Elementary scaling laws for the typical size of a partial minimum and the average number
of minima are derived heuristically. We assume that (i) the partial minimum is dominant
on a fixed set of k coordinates and (ii) all its coordinates are equal, xi = x, for all i. By
the partial minimum definition, the corresponding k-dimensional hypercube contains only the
partial minimum itself. The volume of this hypercube is xk and the expected number of points
inside this hypercube must be of order 1, Nxk ∼ 1. Consequently, the typical size x decays
algebraically with N,

x ∼ N− 1
k . (1)

This characteristic scale decreases as the minimum condition becomes more stringent, that is,
as k decreases.

The expected number of partial minima

A ∼ N− d−k
k (2)

follows from the expected number of points inside the d-dimensional hypercube with linear
dimension x,Nxd . Partial minima are asymptotically rare and the scale 1 decays indefinitely.
Furthermore, with a small probability, there is only one minimum when N is large. The scaling
estimate 2 coincides with the exact value A = N−(d−1) for k = 1, since any point is a global
minimum with probability N−d . For k = d, the minimum in any one coordinate is a partial
minimum and thus there is at least one partial minimum. Indeed, the decay exponent d−k

k
in

2 vanishes. This special case is discussed separately.

3. The density of minima

The density Pd,k(x) of k minima located at x is obtained analytically through a formal
generalization of the heuristic argument above. For example, in two dimensions, the density
is

P2,k(x1, x2) =
{

N [1 − (x1 + x2 − x1x2)]N−1 k = 1,

N [1 − x1x2]N−1 k = 2.

The factor N is the number of ways to choose the minimum, and the second factor guarantees
that the rest of the points do not dominate the minimum at (x1, x2). These points must not fall
inside an L-shaped region of area x1 + x2 − x1x2 or equivalently 1 − (1 − x1)(1 − x2) when
k = 1, or a rectangle of area x1x2 when k = 2, as illustrated in figure 2.

In general, the density of minima

Pd,k(x) = N [1 − Gd,k(x)]N−1 (3)

reflects that the N − 1 points are excluded from a d-dimensional region of volume Gd,k(x).
The excluded volume obeys the recursion

Gd,k(x) = xdGd−1,k−1(x) + (1 − xd)Gd−1,k(x). (4)
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Figure 2. Illustration of the excluded area for a global minimum (k = 1, left) and points on
the efficient set (k = 2, right) in two dimensions. Points in the gray region k-dominate the
distinguished point.

In our notation, the dimensional index of a function dictates the dimension of its vectorial
argument so the vectors on the right-hand side of 4 have d − 1 components. We obtain the
recursion relation 4 by separating the excluded region into two regions: one in which the dth
coordinate is dominant and one in which it is not. Using the boundary conditions Gd,0 = 1
and Gd,k = 0 when k > d, we recover G1,1 = x1 and G2,1 = x1 + x2 − x1x2. Furthermore,

G3,k =
⎧⎨
⎩

1 − (1 − x1)(1 − x2)(1 − x3) k = 1,

x1x2 + x1x3 + x2x3 − 2x1x2x3 k = 2,

x1x2x3 k = 3.

In general, Gd,d = ∏d
i=1 xi and Gd,1 = 1 − ∏d

i=1(1 − xi).

4. Scaling

In the limit N → ∞, the product term x1x2 in P2,1 = N [1 − (x1 + x2 − x1x2)]N−1 is negligible
compared with the linear term x1 + x2 and thus,

P2,1(x1, x2) → N e−N(x1+x2).

Generally, only the kth degree terms are asymptotically relevant and the leading behavior is

Pd,k(x) → N e−NFd,k(x). (5)

The auxiliary function Fd,k(x) contains
(
d

k

)
terms, each a distinct product of degree k. For

example,

F3,k =
⎧⎨
⎩

x1 + x2 + x3 k = 1,

x1x2 + x1x3 + x2x3 k = 2,

x1x2x3 k = 3.

The auxiliary function equals the sum, Fd,1 = ∑d
i=1 xi , and the product, Fd,d = ∏d

i=1 xi , in
the two extremes. The function Fd,k(x) is defined recursively

Fd,k(x) = xdFd−1,k−1(x) + Fd−1,k(x) (6)

for 1 � k � d with the boundary condition F0,k = δk,0. This recursion follows from 4 by
dropping the higher-degree term xdGd−1,k(x).

The asymptotic behavior 5 can be recast in the scaling form

Pd,k(x) → N�d,k(z), (7)
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as N → ∞. The scaling variable is z = xN1/k , in accord with 1, and the scaling function is

�d,k(z) = e−Fd,k(z). (8)

The average number of k minima equals the integral of the density, Ad,k = ∫
dxPd,k(x),

where
∫

dx ≡ ∏d
i=1

∫ 1
0 dxi .3 When k < d, the asymptotic behavior of the average follows

from the scaling form 7, Ad,k � ad,kN
− d−k

k , and is in agreement with 2. The proportionality
constant ad,k equals the integral of the scaling function, ad,k = ∫

dz�d,k(z), although now,
the integration range is unrestricted,

∫
dz ≡ ∏d

i=1

∫ ∞
0 dzi . The prefactor is trivial for perfect

minima, ad,1 = 1, and otherwise, it can be obtained analytically only in a few exceptional
cases.

5. Extreme statistics

Since global minima are constrained along all cost coordinates, extremely large costs are
exponentially rare, whenever such a global minimum exists. Because we have relaxed the
minimality condition, this may not necessarily be the case for partial minima. In our voting
example, a candidate who is attractive to a voter on a multitude of issues may be extremely
unattractive on a particular one. How likely is such a scenario?

We begin our study of extremal statistics [10–12] by first considering the distribution
of the largest coordinate in a partial minimum. Without loss of generality, we order the
coordinates x1 < x2 < · · · < xd−1 < xd . Our focus is on the tail of the distribution of the
variable xd , corresponding to the regime xd � xd−1. We also restrict our attention to
the limit N → ∞. The distribution Q1(xd) of the largest coordinate xd equals the integral of
the multivariate distribution with respect to the rest of the coordinates,

Q1(xd) =
∫

dx1 · · ·
∫

dxd−1Pd,k(x1, x2, · · · , xd)

∼
∫

dx1 · · ·
∫

dxd−1N e−NFd,k(x)

∼
∫

dx1 · · ·
∫

dxd−1N e−NxdFd−1,k−1(x)

∼ N− d−k
k−1 (xd)

− d−k
k−1 −1. (9)

The second line is obtained by substituting the leading asymptotic behavior 5 and the third
line reflects that only the first term in 6 is relevant when xd � xi for all i < d. Our last step
is to multiply and divide the third line by xd and then invoke the scaling law 2 for the average
number of k − 1 minima in d − 1 dimensions. In essence, we utilize the fact that when one of
the coordinates is very large, the partial minima criterion involves one less constraint in one
less dimension4. The power-law decay of the distribution 9 shows that there is a substantial
likelihood that xd is relatively large.

The distribution Q2(xd−1) of the second largest coordinate xd−1 is obtained using the
bivariate distribution Q̃(xd−1, xd),

Q̃(xd−1, xd) =
∫

dx1 · · ·
∫

dxd−2Pd,k(x1, x2, · · · , xd)

∼
∫

dx1 · · ·
∫

dxd−2N e−NFd,k(x)

3 For small N, these integrals can be calculated manually or through recursion formulae. For example,
Ad,k = 1

2 (Ad−1,k−1 + Ad−1,k−1) when N = 2.
4 Formally, when xd = 1 then Gd,k(x) = Gd−1,k−1(x).
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∼
∫

dx1 · · ·
∫

dxd−2N e−Nxd−1xdFd−1,k−1(x)

∼ N− d−k
k−2 (xd−1xd)

− d−k
k−2 −1. (10)

The distribution Q2(xd−1) equals the integral of the bivariate distribution with respect to
the largest coordinate, Q2(xd−1) = ∫ 1

xd−1
dxdQ̃(xd−1, xd). This integral is dominated by the

divergence at the lower limit of integration, and consequently,

Q2(xd−1) ∼ N− d−k
k−2 (xd−1)

−2 d−k
k−2 −1. (11)

The power-law tail is now steeper.
A similar calculation applies to the distributions of the k − 1 largest elements. In general,

the distribution Qj(yj ) of the j th largest element, yj , with the definition yj ≡ xd+1−j , decays
as a power law,

Qj(yj ) ∼ N
− d−k

k−j (yj )
−αj −1 (12)

for 1 � j � k − 1. The decay exponent increases monotonically with the index j ,

αj = j
d − k

k − j
. (13)

We can verify the decay law 2 using A ∼ ∫ 1
N−1/k dyjQj (yj ), where the lower limit of integration

is set by the typical size scale 1. Interestingly, there are k − 1 distinct scaling behaviors for
the k − 1 largest elements. Each of these extremal coordinates is distributed according to a
power-law distribution that is characterized by a distinct exponent.

This multiscaling behavior affects the behavior of the moments 〈ym
j 〉 defined as follows,

〈ym
j 〉 = Im/I0, where Im = ∫ 1

N−1/k dyjy
m
j Qj (yj ). The integral Im is dominated by the

divergence at the lower cutoff when the order is small, m � αj , but otherwise, the integral Im

is finite. Consequently, the moments have the following scaling dependences on N:

〈ym
j 〉 ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N−m/k m < αj ,

1

k
N

− j (d−k)

k(k−j) ln N m = αj ,

N
− j (d−k)

k(k−j) m > αj .

(14)

Low-order moments exhibit ordinary scaling behavior as they are characterized by the typical
size scale 1 that underlies the multivariate distribution function 8. As usual, there is a
logarithmic correction at the crossover. High-order moments plateau at a fixed value that
is independent of the index m, an indication that there is a significant probability that the
extreme elements are of order 1. Interestingly, the average size of the different coordinates
may follow different scaling laws. For example, there are two scaling laws, 〈y1〉 ∼ N−1/6 and
〈y2〉 ∼ N−1/3 when d = 4 and k = 3. Of course, the sum

∑d
i=1 xi has the same extremal

statistics as does xd .
The crossover moment or equivalently the exponent αj diverges as k → j . Therefore,

the smallest d + 1 − k coordinates exhibit the ordinary scaling behavior

〈ym
j 〉 ∼ N−m/k (15)

for k � j � d, and all moments of the respective distribution functions must be finite. In
these cases, the distribution functions Qj have tails that are as sharp as or sharper than an
exponential. In the aforementioned case d = 4 and k = 3, the third and the fourth largest
coordinates exhibit the ordinary scaling, 〈y3〉 ∼ 〈y4〉 ∼ N−1/3.
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Figure 3. Illustration of the efficient set in two dimensions. Filled squares are on the efficient set
and unfilled squares are not. Only four of the filled squares are on the convex hull.

6. Efficient sets

The set of points that are not dominated on all coordinates by any other point are partial
minima when k = d (figure 3). We refer to this set as the ‘efficient set’. The efficient set,
also termed the efficient frontier or Pareto equilibria, plays a central role in multi-objective
optimization and has been studied extensively in economics, computer science, operations
research and game theory [13, 14]. Since there is no objective trade-off between costs, every
point in the efficient set is potentially a solution to the multi-objective optimization problem.
The study of the properties of efficient sets was the original motivation for our research.

In the special case k = d, the expected size of the efficient set, Ed(N) ≡ Ad,d(N), obeys
the recursion

Ed(N) = Ed(N − 1) +
1

N
Ed−1(N). (16)

The point with the largest xd coordinate certainly does not dominate any other point.
Furthermore, this point is on the efficient set if and only if the rest of its d − 1 coordinates
are not dominated by any other point. This event occurs with probability 1

N
Ed−1(N) and

hence the second term in the recursion. We note that the recursion 16 can also be obtained by
performing the integration over xd in Ed(N) = N

∫
dx[1 − x1x2 · · · xd ]N−1. This integration

is analytically feasible only if k = 1 or k = d.
The recursion relation 16 is subject to the boundary condition E1(N) = 1. In two

dimensions,

E2(N) = 1 +
1

2
+

1

3
+ · · · +

1

N
, (17)

or alternatively, E2(N) = H(N), where H(N) = ∑N
n=1

1
n

is the harmonic number. The
average size of the efficient set grows logarithmically, E2(N) = ln N + γ + · · ·, where
γ = 0.57721 is Euler’s constant. In three dimensions, we have E3(N) = ∑N

n=1
1
n
H(n), and

asymptotically, E3(N) � 1
2 (ln N)2. The large-N behavior is obtained in general by converting

the difference equation 16 into a differential equation dEd/dN = Ed−1/N . The expected size
of the efficient set grows logarithmically,

Ed(N) � 1

(d − 1)!
(ln N)d−1. (18)
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This logarithmic growth reflects that the integral of the scaling function,
∫

dz�d,d(z), is
divergent at the upper limit. A straightforward generalization of the calculation above shows
that the distribution of the extremal coordinates has a logarithmic correction,

Qj(yj ) ∼ (ln N)d+1−j (yj )
−1| ln yj |j−1, (19)

for 1 � j � d − 1. We can verify that the average number of points is consistent with the
exact behavior

∫
N−1/d dyjQj (yj ) ∼ (ln N)d−1 as in 18. The crossover moment vanishes and

the moments decay logarithmically,〈
ym

j

〉 ∼ (ln N)−j , (20)

where m > 0 and 1 � j � d − 1.

7. Two dimensions

For the case d = 2, we obtain closed form expressions for the distribution function of partial
minima. This permits us to establish central limit-type behaviors for the distribution of the
size of the efficient set.

In two dimensions, the distribution function pn(N) for the event that the efficient set
includes n points, where 1 � n � N , satisfies the recursion5

pn(N) = (1 − N−1)pn(N − 1) + N−1pn−1(N − 1) (21)

and is subject to the boundary condition Pn(0) = δn,0. On the square, there are two coordinates:
x1 and x2. We can derive 21 by alluding to the same reasoning behind 16, i.e., the point with
the largest x2 coordinate will be on the efficient set if and only if its x1 coordinate is minimal,
an event that occurs with probability N−1.

Recursion equations for the average E(N) = 〈n〉 and the variance V (N) = 〈n2〉 − 〈n〉2

with 〈f (n)〉 ≡ ∑N
n=1 f (n)Pn are obtained by summing 21. The average satisfies E(N) =

E(N−1)+N−1 in accord with 16 and the variance satisfies V (N) = V (N − 1) + N−1 − N−2.
Thus, the variance equals the difference between the first and the second harmonic numbers

V (N) = H(N) − H(2)(N), (22)

where H(2)(N) = ∑N
n=1 n−2. The variance and the average have identical leading asymptotic

behaviors, V (N) = ln N +
(
γ − 1

6π2
)

+ · · ·.
With the transformation pn(N) = 1

N! p̃n(N), the auxiliary function p̃n(N) satisfies the
recursion

p̃n(N) = (N − 1)p̃n(N − 1) + p̃n(N − 1) (23)

with p̃n(0) = δn,0. This recursion defines the Stirling numbers
[
N

n

]
[15], so p̃n(N) = [

N

n

]
.

Therefore, the full probability distribution is expressed in closed form,

pn(N) = 1

N !

[
N

n

]
, (24)

for 0 � n � N .
The general asymptotic behavior, derived in [16],

pn(N) � 1

N

1

�(n/ ln N)

(ln N)n

n!
(25)

5 Generally, p1(N) = Ad,1 = N−(d−1).
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applies in the limit n → ∞, N → ∞ with the ratio n/ ln N finite. For small n 
 ln N , the
distribution is Poissonian, Pn(N) = N−1(ln N)n−1/(n − 1)! and for large n, the distribution
approaches a Gaussian centered at the average E(N) � ln N with the variance V (N) � ln N ,

pn(N) → 1√
2π ln N

exp

[
− (n − ln N)2

2 ln N

]
. (26)

We note that the convex hull, a subset of the efficient set (see figure 3), is characterized
by similar statistical properties including a limiting Gaussian distribution and logarithmic
growths, albeit with different prefactors, of the average and the variance [17–19].

8. Multi-objective shortest path

The multi-objective shortest path on a graph is defined as follows. Consider a graph, possibly
with multiple edges connecting pairs of nodes, with d different costs on each edge. Fix
the source and the destination nodes, and then consider all paths from source to destination,
assigning d total costs to each path computed as the sum of the d individual costs of the
path’s constituent edges. The multi-objective shortest path problem consists of finding the
efficient set of paths. Generally, finding the efficient set is an NP-hard problem, although less
demanding approximation schemes exist [20, 21]. Nevertheless, the computation time of the
approximation scheme depends crucially on the size of the efficient set.

Suppose the edge costs are independent, random draws from a common distribution. We
can consider two limiting topologies. First, for a graph of two nodes connected by N edges,
the number of elements in the efficient set grows poly-logarithmically in the number of edges
as shown in 18. Second, for a one-dimensional chain of nodes where each pair of neighboring
nodes is connected by a pair of edges, the total path costs become correlated [20], even though
the individual edge costs are not. We have conducted numerical studies that find that the
size of the efficient set is highly sensitive to the distribution of edge costs. Assuming each
edge has two costs (w1, w2), both chosen from some continuous distribution, the convex hull
grows linearly in the length of the chain. Interestingly, we observed various behaviors for the
size of the efficient set, ranging from linear in the length of the chain, to power-law behavior,
characterized by exponents greater than unity, up to stretched exponential behavior.

Finally, we consider Erdös–Renyi random graphs [22–24]. Using the fact that the shortest
path between two randomly chosen nodes grows logarithmically with the total number of nodes
in the graph and the fact that paths that are close in length to the shortest path weakly overlap
and hence their costs are weakly correlated, the results in this paper can be used to heuristically
show [25] that the size of the efficient set of paths grows poly-logarithmically with the number
of nodes as in 18. This number is much smaller than the number found for chains where the
paths are correlated.

9. Conclusions

We proposed partial minima as a protocol for identifying pseudo-optimal solutions to multi-
objective optimization problems. Partial minima are defined by a parameter k: a point in d
dimensions that dominates all other points on at least d − k coordinates is a partial minimum.
As this optimality criterion becomes more stringent, partial minima improve in quality but are
less probable. In the extreme case k = d, the number of partial minima grows logarithmically
with the total number of points.

Remarkably, there is a series of distinct power-law distributions that characterize the
largest coordinates with a consequent multiscaling distribution of the moments, while the rest
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of the coordinates obey ordinary scaling. Viewed as quasi-optimal solutions to multi-objective
optimization problems, partial minima involve a trade-off. When the optimality criterion is
relaxed, these quasi-optima become more likely, but are more likely to incur at least one
extremely large cost.

Our results hold as long as the set of points are not correlated, that is, as long as they are
drawn from independent distributions. These distributions need not be identical. If the ith
coordinate is drawn from the distribution fi(xi), the transformation xi → ∫ xi

0 dyifi(yi) and
dxi → fi(xi) dxi maps to a uniform distribution in the unit hypercube. Correlations present
an interesting challenge and we anticipate serious modifications to the scaling laws above. For
instance, it is simple to show that the size of the efficient set grows as a power of the number
of points, ∼N1/2, rather than a logarithm, when the points are uniformly distributed inside
the unit circle. Incidentally, this growth is much faster than the N1/3 for the corresponding
number of points in the convex hull [17].

Another interesting issue is the crossover from the algebraic decay 2 to the logarithmic
growth 18. The average number of partial minima decreases monotonically with N when k is
small, but is a non-monotonic function of N when k is large. For example, when d = 4 and
k = 3, the average Ad,k peaks at N = 16. It will be interesting to elucidate how the height
and the location of this peak scales with N.
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